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1. Introduction

Supersymmetric gauge theory is one of the most exciting topics in high energy physics

from various points of view. An important property of supersymmetric theory is that we

can exactly deal with the theory using the algebra of supersymmetry. Among such exact

results, one of the most significant steps toward understanding the non-perturbative prop-

erty of (supersymmetric) gauge theory is that Seiberg and Witten exactly determined the

low energy prepotential of four-dimensional N = 2 supersymmetric gauge theory [1, 2].

Furthermore, the instanton contribution to the prepotential of the N = 2 theory has been

exactly calculated through a partition function of Young diagrams (the Nekrasov parti-

tion function) [3, 4]. This partition function is obtained by explicitly carrying out the

path-integral of four-dimensional N = 2 supersymmetric Yang-Mills theory deformed by

a constant graviphoton background (Ω-background) parametrized by ǫ.1 Thanks to this

deformation, we can carry out the integration over the instanton moduli space using the

so-called localization technique [5 – 8], which yields a partition function of Young diagrams

(see [9] for further development). In particular, the leading term of the free energy in

1The Ω-background is parametrized by two parameters ǫ1 and ǫ2 in general. In this paper, however, we

concentrate on the case of ǫ1 = −ǫ2 = ǫ.
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the expansion in powers of ǫ has been shown to coincide with the low energy prepoten-

tial of four-dimensional N = 2 SU(N) supersymmetric Yang-Mills theory [10 – 12] (see

also [13]). Thus the k-instanton contribution to the prepotential can be explicitly read off

by evaluating the partition function.

The Nekrasov partition function and the nature of the Ω-background have been in-

tensively studied in terms of string theory. In general, four-dimensional N = 2 gauge

theory can be realized in Type IIB superstring theory as an effective theory on fractional

D3-branes, where instanton effects come from D(-1)-branes bound to the fractional D3-

branes. In [14], it was shown that the effective action of the fractional D3-D(-1) system in

a RR-background coincides with the instanton effective action of four-dimensional N = 2

theory in the Ω-background. This means the RR-background is equivalent with the Ω-

background in this brane configuration. This brane configuration in the RR-background

and the deformed four-dimensional gauge theory have been further studied in [15 – 20]. For

a relation between the Nekrasov formula and topological string, see [21 – 26]. In this con-

nection, relations with topological vertex [27 – 29], melting crystal [30, 31], and integrable

systems have been studied in detail [32 – 45].2

The purpose of this paper is to reproduce the Nekrasov partition function in terms of

the Hanany-Witten type brane configuration in Type IIA superstring theory [49, 50], that

is, a system of N D4-branes stretched between two parallel NS5-branes. This configuration

is a T-dual of the system of fractional D3-branes mentioned above and the instanton effects

of four-dimensional Yang-Mills theory come from (Euclidean) D0-branes “propagating”

between the two NS5-branes. We explicitly show that we can identify the Ω-background

as a background of RR 4-form field strength in this brane configuration as expected. In

general, D0-branes behave as a dielectric D2-brane in a background of constant RR 4-form

field strength [51]. In addition, a D2-brane can have the end on a Type IIA NS5-brane

whose boundary is coupled with the self-dual 2-form potential in the world-volume of the

NS5-brane [52]. We evaluate the potential energy coming from the interaction between the

boundaries of the dielectric D2-branes in the NS5-branes and the “kinetic energy” of the

D0-branes propagating between the two NS5-branes. We show that the partition function

of these configurations coincides with the Nekrasov partition function of instantons. We

also reproduce the Nekrasov partition function for N = 2 theory with hypermultiplets in

the fundamental representation using the same method.

The organization of this paper is as follows. In the next section, after briefly reviewing

the Hanany-Witten type brane configuration, we show that the Ω-background is identical

with a background of RR 4-form field strength in this brane configuration. In section 3, we

analyze the behavior of D0-branes in detail and reproduce the Nekrasov partition function

as a partition function of the D0-branes. In section 4, we reproduce the instanton partition

function of N = 2 theory with hypermultiplets in the fundamental representation using the

same method developed in section 3. Section 5 is devoted to conclusion and discussion. In

appendix A, we review the Frobenius representation of Young diagram. In appendix B, we

2For relations between the Nekrasov partition function and simple physical systems like 2D Yang-Mills

theory, 3D Chern-Simons theory and matrix models, see [46 – 48].
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summarize the Nekrasov partition function and rewrite it in the Frobenius representation.

In appendix C, we summarize the Nekrasov formula for N = 2 theory with hypermultiplets

in the fundamental representation.

2. Brane configuration in a RR-background

In this section, we briefly review the Hanany-Witten type brane configuration to realize

four-dimensional N = 2 supersymmetric gauge theory. We introduce NSNS B-field and

RR 4-form field strength in the background and show that the Myers term introduced in

the effective potential of D0-branes is identical with the deformation of instanton effective

action by the Ω-background.

2.1 Brane configuration

In order to realize four-dimensional N = 2 supersymmetric SU(N) Yang-Mills theory, we

consider a system of two parallel NS5-branes and N D4-branes stretching between the

NS5-branes [50] (see also the review [53] and references therein). The world-volumes of the

NS5-branes and the D4-branes are along the 012345 and 01236 directions, respectively, and

the N = 2 gauge theory arises as the low energy effective theory on the common directions

0123. We introduce complex combinations of the coordinates as

z1 ≡ x0 + ix1, z2 ≡ x2 + ix3, v ≡ x4 + ix5, (2.1)

and rename x6 as τ as well. We assume that the NS5-branes sit at τ = 0 and L, respectively,

and the D4-branes stretch between NS5-branes at v = al (l = 1, . . . , N). Since we are

interested in instanton contributions to the four-dimensional gauge theory, we also add

(Euclidean) D0-branes bound to the D4-branes that propagate between the NS5-branes [4]

(see figure 1). From the four-dimensional theory point of view, al correspond to the classical

vev of the adjoint scalar fields and the coupling constant of the gauge theory is related to

L as
1

g2
YM

=
L

gsls
, (2.2)

where gs and ls are the string coupling constant and the string length, respectively.

Precisely speaking, the definition of L is ambiguous since the D4-branes deform the

world-volume of the NS5-branes as [50]

τ = ±gsls

N
∑

l=1

(

log
|v − al|

Λ

)

, (2.3)

where Λ is a positive constant. From the relation (2.2), the gauge coupling constant is a

function of v. In the region v ≫ al, it gives

1

g2
YM(v)

∼ log
|v|2N

Λ2N
. (2.4)

Thus it is reasonable to interpret Λ as the dynamical scale of the four-dimensional gauge

theory and define L as the distance between the NS5-branes at the cut-off scale.
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NS5-brane NS5-brane

v

aN

a2

a1D4-brane

D4-brane

...

D0-brane

D4-brane

τ
0 L

Figure 1: The brane configuration in (τ, v, v̄) space. The NS5-branes sit at τ = 0 and τ = L, and

the D4-branes are expressed as solid lines stretch between the NS5-branes at v = a1, . . . , aN . We

also consider Euclidean D0-branes propagating between the NS5-branes, which is expressed as a

dotted line in the figure.

Under this configuration, in addition to the coupling between light modes on D4-

branes, there are couplings of these light modes to bulk gravity fields, to fields living on

NS5-branes, and to massive modes on D4-branes in general. Since we are interested in

gauge theory dynamics, these coupling must be small. To do so, we take the limit,

gs → 0, L/ls → 0. (2.5)

Furthermore, in order for the system to be consistent with the interpretation of Coulomb

branch of the four-dimensional gauge theory, the vev of the adjoint scalar must be suffi-

ciently smaller than the Kaluza-Klein scale 1/L. Therefore, al must satisfy

aln ≡ al − an ≪ l2s/L. (2.6)

We must also require

aln ≪ ls, aln ≪ L, (2.7)

in order to decouple massive modes of open strings on D4-branes.

2.2 Effective action of D0-branes and its deformation by flux

Suppose that k D0-branes are bound to D4-branes and let us consider the low energy

effective theory on the D0-branes. The degrees of freedom of the effective theory come

from open strings between D0-branes and those between D0-branes and D4-branes. The

former gives k×k bosonic complex matrices B1, B2 and φ, which are collective coordinates

corresponding to the directions z1, z2 and v, respectively, and fermionic complex matrices

ΨB1
, ΨB2

and η with the same size. The latter gives bosonic complex matrices I and J

with the size k × N and N × k, respectively, and fermionic complex matrices ΨI and ΨJ

with the size k × N and N × k, respectively.
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The effective theory is a quantum mechanics of these matrix variables [54, 55]. Since

we are interested in BPS configuration of the system, however, it is sufficient to look at

the potential terms, which is efficiently expressed as a BRST exact form as

V = QTr k

(

χrµr + χcµc + χ†
cµ

†
c + φ̄µη

)

, (2.8)

with

µr ≡ [B1, B
†
1] + [B2, B

†
2] + II† − J†J,

µc ≡ [B1, B2] + IJ,

µη = [B1,Ψ
†
B1

] − [B†
1,ΨB1

] + [B2,Ψ
†
B2

] − [B†
2,ΨB2

] + ΨII
† + IΨ†

I − J†ΨJ − Ψ†
JJ, (2.9)

where we have introduced auxiliary fermionic matrices χr and χc and their superpartners

Hr and Hc with the size k × k. The BRST transformation is given by

QBi = ΨBi
, QΨBi

= [φ,Bi], (i = 1, 2)

QI = ΨI , QΨI = ΦI − Ia,

QJ = ΨJ , QΨJ = −Jφ + aJ,

Qχr = Hr, QHr = [φ, χr],

Qχc = Hc, QHc = [φ, χc],

Qφ̄ = η, Qη = [φ, φ̄], Qφ = 0, (2.10)

where a ≡ diag(a1, . . . , aN ). As a nature of a system of k D0-branes, the effective theory

possesses gauge symmetry U(k). In fact, (2.8) is invariant under the transformation,

Bi → gBig
−1, φ → gφg−1, I → gI, J → Jg−1,

ΨB1
→ gΨBi

g−1, η → gηg−1, ΨI → gΨI , ΨJ → ΨJg−1, (2.11)

with g ∈ U(k). Note that the potential (2.8) is nothing but the instanton effective action

of four-dimensional N = 2 supersymmetric gauge theory. Indeed the BPS configuration

of D0-branes, that is, the instanton moduli space is determined by solving the ADHM

equations,

µr = 0, µc = 0, (2.12)

as well as

[φ,Bi] = 0, φI − Ia = 0, −Jφ + aJ = 0, [φ, φ̄] = 0. (2.13)

For more detail, see [56] and references therein.

We deform the effective potential (2.8) by introducing flux in the background of the

brane configuration. We first introduce a constant NSNS B-field,

B(2) =
ζ

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) . (ζ > 0) (2.14)
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It is familiar that NSNS B-field background introduces noncommutativity into the world-

volume of D4-branes [57];

[z1, z̄1] =
ζ

2
, [z2, z̄2] =

ζ

2
, (2.15)

which modifies µr in the potential (2.8) as

µr → µr − ζ. (2.16)

By this modification, it turns out that the size moduli of instantons cannot be zero, that is,

the small instanton singularity of the moduli space is resolved [58, 59]. From the D0-brane

point of view, the presence of NSNS B-field prevents D0-branes to escape from D4-branes

without breaking supersymmetry [57].

In addition to the NSNS B-field, we further introduce a RR 3-form potential,

C(3) = ǫ (v + v̄) (−dτ ∧ dz1 ∧ dz̄1 + dτ ∧ dz2 ∧ dz̄2) , (2.17)

or, equivalently, a RR 4-form field strength,

F (4) = 2ǫ
(

dτ ∧ dx4 ∧ dz1 ∧ dz̄1 − dτ ∧ dx4 ∧ dz2 ∧ dz̄2

)

. (2.18)

As shown in [51], D0-branes have a coupling with RR 4-form field strength through the

so-called Myers term,

F
(4)
τijkTr

(

Φi[Φj,Φk]
)

, (2.19)

where F (4) is the 4-form field strength and Φi are the collective coordinates of D0-branes.

From (2.18) and (2.19), we see that the Myers term,

ǫTr k

{

(φ + φ̄)
(

[B1, B
†
1] − [B2, B

†
2]
)

}

, (2.20)

is added to the effective potential (2.8) due to the RR 4-form field strength (2.18). It is

easy to show that this modification is achieved by modifying the BRST charge Q in (2.8)

to Qǫ defined by

QǫΨB1
= [φ,B1] + ǫB1,

QǫΨB2
= [φ,B2] − ǫB2, (2.21)

and the others are the same with (2.10). This is exactly the same deformation of the

instanton effective action in the Ω-background [3]. Thus, as expected, we can conclude that

the Ω-background is equivalent with the background of RR 4-form field strength (2.18) in

the brane configuration given above.

By combining both the effects of NSNS B-field (2.14) and RR 3-form (2.17), we obtain

the deformed D0-brane effective potential;

Vmod = QǫTr

(

χr(µr − ζ) + χcµc + χ†
cµ

†
c + φ̄µη

)

, (2.22)

with (2.9) and (2.21).
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3. Nekrasov partition function from D0-branes

The instanton part of the Nekrasov partition function (B.3) is originally obtained by ex-

plicitly evaluating the integral,

Zk(ǫ,Λ) =

∫

[dB1dB2 · · · ]e−Vmod , (3.1)

by using a property that the integral is localized at Qǫ-invariant points in the moduli space

of instantons [7 – 9]. In the language of brane configuration, it corresponds to counting the

BPS configurations of D0-D4 bound state in the background of the NSNS B-field (2.14)

and the RR 4-form field strength (2.18). Such a configuration is obtained by solving the

equations,

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = ζ, [B1, B2] + IJ = 0,

[B1, φ] = ǫB1, [B2, φ] = −ǫB2, [φ, φ̄] = 0,

φI − Ia = 0, Jφ − aJ = 0. (3.2)

In this section, we reproduce the instanton part of the Nekrasov partition function as a

partition function of the D0-branes in the brane configuration introduced in the previous

section. For simplicity, we start with the case of N = 1 and the case of N > 1 follows that.

3.1 N = 1

Although we can set a = 0 in this case, we keep it for a later discussion. It is easy to show

that the matrices,

B
(ñ,n;a)
1 ≡





























0
√

ζ
. . .

. . .

0
√

ñζ

0 0

0
. . .
. . . 0

0





























, B
(ñ,n;a)
2 =





























0

0
. . .
. . . 0

0 0√
nζ 0

. . .
. . .√

ζ 0





























,

φ(ñ,n;a) ≡



























a − ñǫ
. . .

a − ǫ

a

a + ǫ
. . .

a + nǫ



























, I(ñ,n;a) ≡



























0
...

0
√

(n + ñ + 1)ζ

0
...

0



























,

J (ñ,n;a) ≡ 0, (3.3)
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solve the equations (3.2) for any ñ, n ∈ Z≥0 with ñ + n + 1 = k. We call (3.3) as an

irreducible solution. The equations (3.2) can be generally solved as block diagonal matrices

that consist of irreducible solutions;

B
(ñ,n;a)
i ≡









B
(ñ1,n1;a)
i

. . .

B
(ñL,nL;a)
i









, φ(ñ,n;a) ≡









φ
(ñ1,n1;a)
i

. . .

φ
(ñL,nL;a)
i









,

I(ñ,n;a) ≡







I(ñ1,n1;a)

...

I(ñL,nL;a)






, J (ñ,n;a) ≡ 0, (3.4)

up to the gauge transformation (2.11) and/or a discrete transformation that keeps the

potential (2.22) invariant. Here we have defined ñ and n as ñ = (ñ1, . . . , ñL) and n =

(n1, . . . , nL) with satisfying

L
∑

i=1

(ñi + ni + 1) ≡
L
∑

i=1

ki = k, (3.5)

and we call this solution as a reducible solution in the following. Note that, by using the

center Zk of the gauge group U(k), we can always rearrange ñ and n so that they satisfy

ñ1 ≥ · · · ≥ ñL ≥ 0, n1 ≥ · · · ≥ nL ≥ 0. (3.6)

What kind of configuration does the solution (3.4) express? In order to answer this

question, let us first recall the situation of D0-D4 bound state in a constant self-dual NSNS

B-field background. From the view point of D4-brane, D0-branes behave as instantons

of four-dimensional gauge theory whose size is bounded from below as a result of non-

commutativity introduced by the B-field. As a result, the D0-branes are smeared into the

four-dimensional (Euclidean) world-volume of the D4-branes with the size
√

|B| [58]. On

the other hand, consider D0-branes in a constant RR 4-form field strength background.

In this case, the D0-branes expand into a fuzzy two-sphere, which can also be regarded

as a spherical D2-brane to which D0-branes are bound [51]. Combining them, we can

think of the irreducible solution (3.3) as a spherical configuration of D0-branes that is

smeared in the four-dimensional space along (z1, z2) and is bulging from the world-volume

of D4-brane in the x4-direction. Looking at the solution (3.3), the typical size of this

configuration along (z1, z2) is O(
√

ζ) and that along the x4-direction is O(ǫ) as expected.

This configuration can be also interpreted as a spherical D2-branes to which D0-branes

are bound as mentioned above. From the irreducible solution φ(ñ,n;a), we see that the

D0-branes locate at x4 = a − ñǫ, a − (ñ − 1)ǫ, . . . , a + nǫ. Since the D0-branes are bound

to a spherical D2-brane, it is reasonable to think that the D2-brane cuts the x4-axis at

x4 = −(ñ + 1/2)ǫ and x4 = (n + 1/2)ǫ (figure 2). We can give the same interpretation for

the reducible solution (3.4); it would express a set of L spherical D2-branes that cut the

x4-axis at x4 = a− (ñi + 1/2)ǫ and x4 = a + (ni + 1/2)ǫ to which D0-branes are bound at

– 8 –
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D4-brane

spherical

z1
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a − (ñ + 1/2)ǫ a + (n + 1/2)ǫa

D2-D0 bound state

Figure 2: The spherical brane configuration corresponding to the irreducible solution (3.3). We

can interpret this configuration as a fuzzy distribution of D0-branes or a spherical D2-brane to

which D0-branes are bound. In the latter interpretation, the D0-branes locate at x4 = a − ñǫ, a −
(ñ − 1)ǫ, . . . , a + nǫ in the spherical D2-brane, which cuts the x4-axis at x4 = a − (ñ + 1/2)ǫ and

x4 = a + (n + 1/2)ǫ.

Figure 3: The boundary of the spherical D2-branes in the v-plane of the NS5-brane. We have

depicted the case of (ñ|n) = (4, 3, 1|3, 2, 1) and a = 0 as an example. In the v-plane, the boundary

of each spherical brane can be seen as a 1-dimensional object. The edges of the object have

opposite charges that make Coulomb potential in the v-plane. The crosses on the objects express

the positions of D0-branes. Although we have drawn each objects as if they were shifted in some

direction, they are overlapping on the x4-axis in reality.

x4 = a− ñiǫ, . . . , a + niǫ (i = 1, . . . , L).3 Note that the net D2-brane charge of this system

is zero. This corresponds to the observation that we need two patches to make a 2-sphere,

which are regarded as a D2-brane and an anti-D2-brane, respectively.

3This is essentially the same configuration obtained in [16].
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Since we are interested in dynamics of four-dimensional gauge theory and ǫ must be

much smaller than aln (in the case of N > 1), ǫ and ζ should satisfy,

ǫ ≪
√

ζ, (3.7)

from the requirement of (2.6) and (2.7). In this limit, each spherical D2-brane behaves as

a pair of D2-brane and anti-D2-brane at x4 = −(ñi + 1/2) and x4 = ni + 1/2, respectively,

which are smeared in the four-dimensional space (z1, z2). In general, a D2-brane can end

on a Type IIA NS5-brane and the boundary behaves as a “string” coupled with self-dual

2-form potential in the world-volume of NS5-brane [52]. Recalling that the D0-branes

propagate between the NS5-branes and the spherical D2-branes are smeared in a four-

dimensional space (z1, z2), the boundaries of the D2-branes and anti-D2-branes are also

smeared in (z1, z2), that would create a two-dimensional Coulomb potential in the v-plane

that is transverse to (z1, z2) in each of the two NS5-branes. Therefore, looking at the

v-plane in one of the NS5-branes, the boundary of each spherical brane can be seen as a

1-dimensional object spanned from x4 = a − (ñi + 1/2)ǫ to x4 = a + (ni + 1/2)ǫ whose

edges have opposite charges ±1 for the two-dimensional Coulomb force as long as (3.7) is

satisfied. We depict an example of the configuration in the v-plane in figure 3.

Now let us estimate the energy of the system corresponding to the solution (3.4) coming

from the boundaries. We must take into account (1) the Coulomb force between charges

in the NS5-branes and (2) the “kinetic energy” of D0-branes propagating between the

NS5-branes:

(1) Coulomb force between charges in the NS5-branes.

In each NS5-brane, we assign charges −1 and +1 to the edges at v = a − ǫ(ñi + 1/2) and

v = a + ǫ(ni + 1/2) (i = 1, . . . , L), respectively.4 The potential energy created by the

two-dimensional Coulomb force between a charge q = ±1 at v = x and a charge q′ = ±1

at v = y can be written as5

V (x, q; y, q′) = −qq′ log |x − y| . (3.8)

Therefore, the potential energies between the edges of the 1-dimensional objects can be

estimated as

V1 = 2 log

(

ǫL

∏L
i,j=1 |ni + ñj + 1|

∏L
i<j |ni − nj| |ñi − ñj|

)

, (3.9)

where the factor 2 comes from the same effect from the two NS5-branes.

(2) D0-branes propagating between the NS5-branes.

We estimate the kinetic energy of each spherical brane by regarding that ki D0-branes at

x4 = a − ñiǫ, . . . , a + niǫ are propagating from one NS5-brane to the other NS5-brane.

4Precisely speaking, the charges of the edges are opposite in each of the NS5-branes. But we do not

need to distinguish them since the NS5-branes are separated with each other.
5Considering a M5-brane on which a D2-brane ends in M-theory, we can estimate the coefficient of (3.8)

using the M5 and M2 charges µM5 and µM2 as
µ2

M2

2πµM5

= 1.
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From (2.3), we see that the distance between the NS5-branes at the position v is given by

d(v) = 2gsls

(

log
|v − a|

Λ
− δv,a log 0

)

, (3.10)

where the second term is necessary to regularize the distance at v = a as d(a) =

−2gsls log Λ. By summing up all the contribution from the D0-branes, we can estimate the

kinetic energy as

V2 =

L
∑

i=1

ni
∑

m=−ñi

T ′
0 d(a + mǫ) = 2gslsT

′
0 log

(

ǫk−L

Λk

L
∏

i=1

ni!ñi!

)

, (3.11)

where T ′
0 is the effective mass of the D0-brane.

Here we assume that we can use the mass of a single D0-brane as the effective mass

T ′
0:

T ′
0 =

1

gsls
. (3.12)

Then we can write down the Boltzmann weight of this configuration as

Z(ñ,n, ǫ,Λ) ≡ e−V1−V2 =
Λ2k

ǫ2k

∏L
i<j |ni − nj|2 |ñi − ñj|2
∏L

i,j=1 |ni + ñj + 1|2
(

1
∏L

i=1 ni!ñi!

)2

. (3.13)

This is nothing but the Boltzmann weight of the Nekrasov partition function in the Frobe-

nius representation (B.11) for N = 1! Note that, if the configuration (ñ,n) satisfies

ñi = ñi+1 or ni = ni+1 for some i, the corresponding Boltzmann weight becomes zero

since the potential energy (3.8) diverges. Therefore we can effectively require that (ñ,n)

satisfy

ñ1 > · · · > ñL ≥ 0, n1 > · · · > nL ≥ 0, (3.14)

instead of (3.6).

3.2 N > 1

It is straightforward to extend the above analysis to the case of N > 1. We can write down

a general solution of the equation (3.2) using the reducible solution (3.4);

B
(ñl,nl,al)

N
l=1

1 ≡
N
⊕

l=1

B
(ñl,nl,al)
1 , B

(ñl,nl,al)
N
l=1

2 ≡
N
⊕

l=1

B
(ñl,nl,al)
2 ,

φ(ñl,nl,al)
N
l=1 ≡

N
⊕

l=1

φ(ñl,nl,al),

I(ñl,nl,al)
N
l=1 ≡







I(ñ1,n1,a1)

...

I(ñN ,nN ,aN )






, J (ñl,nl,al)

N
l=1 ≡ 0, (3.15)
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Figure 4: The configuration in the v-plane in the case of N > 1. We have depicted the case of

N = 3 and (L1, L2, L3) = (3, 5, 4) as an example. As same as the figure 3, at the edges of each

1-dimensional object have opposite charges that make a Coulomb potential in the v-plane.

where ñl = (ñl
1, . . . , ñ

l
Ll

) and nl = (nl
1, . . . , n

l
Ll

) again satisfy (3.6) and

N
∑

l=1

Ll
∑

i=1

(ñl
i + nl

i + 1) ≡
N
∑

l=1

kl = k. (3.16)

In terms of D-brane configuration, this solution corresponds to Ll spherical D2-branes

around v = al (l = 1, . . . , N); the positions of the N D4-branes. Therefore, looking

at this configuration in the v-plane, there seem to be Ll 1-dimensional objects around

v = al (l = 1, . . . , N), which have opposite charges at the edges x4 = al − (ñl
i + 1/2)ǫ and

x4 = al + (nl
i + 1/2)ǫ (i = 1, . . . , Ll) (see figure 4).

We again estimate the energy of this configuration by summing up the potential energy

by the two-dimensional Coulomb force in the NS5-branes and the kinetic energy of the D0-

branes propagating between the NS5-branes. It is easy to see that the potential energy for

the Coulomb force is given by

V1 = 2 log

{

N
∏

l=1

(

ǫLl

∏Ll

i,j |nl
i + ñl

j + 1|
∏Ll

i<j |nl
i − nl

j||ñl
i − ñl

j|

)

×
N
∏

l<n

( Ll
∏

i=1

Ln
∏

j=1

|aln + ǫ(nl
i + ñn

j + 1)||aln − ǫ(ñl
i + nn

j + 1)|
|aln + ǫ(nl

i − nn
j )||aln − ǫ(ñl

i − ñn
j )|

)

}

. (3.17)

On the other hand, since the distance between the NS5-branes is now given by

d(v) = 2gsls

N
∑

l=1

(

log
|v − al|

Λ
− δv,al

log 0

)

, (3.18)

the kinetic energy of the D0-branes becomes

V2 = 2gslsT
′
0 log

{

N
∏

l=1

(

ǫkl−Ll

Λkl

Ll
∏

i=1

ñl
i!n

l
i!

)

×
N
∏

l=1

N
∏

n 6=l

Ll
∏

i=1

(

|aln − ǫñl
i| · |aln − ǫ(ñl

i − 1)| · · · |aln + ǫnl
i|
)

}

. (3.19)
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From (3.17) and (3.19), we obtain the Boltzmann weight of the D0-branes corresponding

to the solution (3.15):

Z(ñl,nl,a, ǫ,Λ) ≡ e−V1−V2

=
Λ2kN

ǫ2kN

N
∏

l=1







∏Ll

i<j |nl
i − nl

j|2|ñl
i − ñl

j|2
∏Ll

i,j |nl
i + ñl

j + 1|2

(

Ll
∏

i=1

1

nl
i!ñ

l
i!

)2






×
N
∏

l<n

{

Ll
∏

i=1

Ln
∏

j=1

|aln + ǫ(nl
i − nn

j )|2|aln − ǫ(ñl
i − ñn

j )|2
|aln + ǫ(nl

i + ñn
j + 1)|2|aln − ǫ(ñl

i + nn
j + 1)|2

×
Ll
∏

i=1

1

|aln − ǫñl
i|2 · |aln − ǫ(ñl

i − 1)|2 · · · |aln + ǫnl
i|2

×
Ln
∏

j=1

1

|aln + ǫñn
j |2 · |aln + ǫ(ñn

j − 1)|2 · · · |aln − ǫnn
j |2

}

, (3.20)

under the assumption (3.12). This expression again coincides with the instanton part of

the Nekrasov partition function in the Frobenius representation (B.11). From this result,

we conclude that the Nekrasov partition function is that of D0-branes bound to D4-branes

in the presence of NSNS B-field (2.14) and RR 3-form (2.17) in the background of the

Hanany-Witten type brane configuration.

4. Nekrasov partition function for N = 2 QCD from D0-branes

In this section, we reproduce the Nekrasov partition function for four-dimensional N = 2

theory with hypermultiplets in the fundamental representations [3] as a non-trivial check

of the method developed in the previous section.

In order to introduce matter fields in the fundamental representation, we add Nf semi-

infinite D4-branes attached to one of the NS5-branes at v = −m1, . . . ,−mNf
in addition

to the N D4-branes stretched between the NS5-branes (figure 5). The positions of these

D4-branes correspond to the bare masses of the hypermultiplets.

The strategy to construct the partition function of D0-branes is the same with the

previous section, namely we use as the same configuration of D0-branes {(ñl,nl, al) | l =

1, . . . , N} as is used in the previous section. Then the potential energy for the Coulomb

force in the v-plane is the same with (3.17). However, the kinetic energy is different

from (3.19) since the NS5-branes are further deformed from (2.3) by the presence of addi-

tional D4-branes:

τ− = −gsls

N
∑

l=1

log

( |v − al|
Λ

)

,

τ+ = gsls

[ N
∑

l=1

log

( |v − al|
Λ

)

−
Nf
∑

f=1

log

( |v + mf |
Λ

)]

, (4.1)
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NS5-brane NS5-brane

v

D4-brane

D4-brane

...

D0-brane

D4-brane

τ0 L

a1

a2

aN

...

D4-brane

D4-brane

−m1

−mNf

Figure 5: The brane configuration to realize four-dimensional N = 2 supersymmetric gauge theory

with hypermultiplets in the fundamental representation. In addition to figure 1, we have added Nf

D4-branes that attach to one of the NS5-branes at v = −m1, . . . ,−mNf
. They have semi-infinite

world-volumes in the direction τ .

where τ± are the positions of the NS5-branes in the direction τ . Then, we see that the

distance between the the NS5-branes at v is given by

d(v) = gsls

[

2
N
∑

l=1

log

( |v − al|
Λ

)

−
Nf
∑

f=1

log

( |v + mf |
Λ

)]

, (4.2)

and the kinetic energy of the D0-branes can be estimated as

V2 = gslsT
′
0 log

{ N
∏

l=1

(

ǫkl−Ll

Λkl

Ll
∏

i=1

ñl
i!n

l
i!

)2

×
N
∏

l=1

N
∏

n 6=l

Ll
∏

i=1

(

|aln − ǫñl
i| · · · |aln + ǫnl

i|
)2

× ΛkNf

Nf
∏

f=1

N
∏

l=1

Ll
∏

i=1

(

1

|mf + al − ǫñl
i| · · · |mf + al + ǫnl

i|

)}

.

(4.3)

Combining (3.17) and (4.3) and assuming (3.12), we obtain the Boltzmann weight corre-

sponding to this configuration of D0-branes;

Z(ñl,nl,a,m, ǫ,Λ) = Z(ñl,nl,a, ǫ,Λ)

× 1

ΛkNf

Nf
∏

f=1

N
∏

l=1

Ll
∏

i=1

(

|mf + al − ǫñl
i| · · · |mf + al + ǫnl

i|
)

, (4.4)

where Z(ñl,nl,a, ǫ,Λ) is given by (3.20). Looking at (C.6), we see that (4.4) coincides with

the instanton part of the Nekrasov partition function for four-dimensional N = 2 theory

with Nf hypermultiplets in the fundamental representation.
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5. Conclusion and discussion

In this paper, we analyzed the behavior of D0-branes in the Hanany-Witten type brane

configuration in a background of RR 4-form field strength and NSNS B-field. We showed

that the partition function of Euclidean D0-branes propagating between the NS5-branes

coincides with the Nekrasov partition function of instantons in four-dimensional N = 2

supersymmetric Yang-Mills theory. In this analysis, the Myers effect played an important

role. We applied the same method to the brane configuration realizing four-dimensional

N = 2 theory QCD and the partition function of the D0-branes again coincides with the

Nekrasov partition function of the theory.

There would be many applications in the method developed in this paper. As a

straightforward application, we can apply it to N = 2 quiver gauge theories and/or N = 2

theories with other gauge groups than SU(N) [60]. It would also be interesting to reduce

supersymmetry from N = 2 to N = 1 by deforming the NS5-branes holomorphically, which

might give a connection to Dijkgraaf-Vafa theory [61 – 63]. Although we have concentrated

on four-dimensional theories in this paper, a five-dimensional version of the instanton par-

tition function is also proposed [3]. In terms of the brane configuration we have used in

this paper, this would be achieved by lifting it up to a configuration of a M5-brane in the

background of a 4-form field strength in the M-theory. It is interesting to extend our anal-

ysis to the M-theory and see how the five-dimensional version of the instanton partition

function appears.

Lastly, as mentioned in Introduction, the Nekrasov partition function is known to

be equivalent to amplitudes of topological string theory of local toric Calabi-Yau man-

ifolds [21 – 26]. In the heart of this relation, there is an idea of geometrical engineer-

ing [64, 65]; by realizing 4D N = 2 gauge theory by compactifying Type II superstring

theory by a Calabi-Yau three-fold, some nature of the gauge theory is explained as a ge-

ometrical property of the Calabi-Yau manifold. It is interesting that the same partition

function is obtained from rather simple set-up of branes in a RR-background. From this

result, it would be quite natural to expect that the brane system with RR flux would be

connected to a Calabi-Yau set-up by a sequence of string duality. It would be an important

and interesting future work to reveal this connection.
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A. Frobenius representation of Young diagram

In this appendix, we introduce the Frobenius representation of Young diagram.
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Figure 6: An example of Young diagram in the Frobenius representation. The Young diagram in

the left figure is expressed by the partition k = {5, 3, 2, 2, 1}. The right figure is the corresponding

profile function. We see that the Frobenius representation of this Young diagram is given by

(9/2, 5/2 | 9/2, 3/2). We also see that there are white circles at x = −9/2 and −5/2 and there are

black circles at x = 9/2 and 3/2, which is the corresponding Maya diagram.

We start with a Young diagram parametrized by {ki}, the number of boxes in the i’s

row satisfying

k1 + · · · + kr = k, k1 ≥ k2 ≥ · · · ≥ kr > 0, (A.1)

which is a partition of the integer k. So we can identify the Young diagram with the

partition k = {k1, . . . , kr} itself.

For our purpose to write down the Nekrasov partition function, it is useful to draw the

diagram by inclining 45 degrees. Here we divide the (inclined) diagram into two parts by

the center line (figure 6). Suppose there are L boxes on this line. Let r̃i and ri (i = 1, . . . , L)

denote the numbers of boxes in the left and right of the i’s box on the center, respectively.

By counting the “number” of the center box in the left and right as 1/2, respectively, we

can express the Young diagram k by a set of half integers r̃i and ri:

(r̃|r) = (r̃1, . . . , r̃L|r1, . . . , rL), r̃i, ri ∈ N − 1/2. (A.2)

This expression is called the Frobenius representation of the Young diagram (or the parti-

tion) k.

Incidentally, this representation is deeply related with the so-called Maya diagram,

which is defined as a sequence of black and white circles on a line. We start the situation

where the black circles and the white circles are at x ∈ −N + 1/2 and x ∈ N − 1/2,

respectively. Maya diagram is obtained by exchanging the positions of arbitrary pairs of

black and white circles. By construction, the number of white circles in the region x < 0 and

that of black circles in the region x > 0 is the same. In the Frobenius representation (A.2),

−r̃i and ri are identified with the positions of white circles in x < 0 and black circles in

x > 0, respectively. We draw an example of these relations in figure 6.
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B. Nekrasov partition function in the Frobenius representation

In this appendix, we review the Nekrasov partition function (for ǫ1 = −ǫ2 ≡ ǫ) and rewrite

it in the Frobenius representation.

The Nekrasov partition function is given by

ZNek (a, ǫ,Λ) = Zpert(a, ǫ)
∞
∑

k=1

∑

k1,...,kN∈Z≥0

k1+···+kN=k

∑

~k1∈Yk1

· · ·
∑

~kN∈YkN

Zinst(a,k, ǫ,Λ), (B.1)

with

Zpert(a, ǫ) = exp







∑

l 6=n

γǫ(al − an; Λ)







, (B.2)

Zinst(a,k, ǫ,Λ) = Λ2Nk
∏

(l,i)6=(n,j)

aln + ǫ(kl,i − kn,j + j − i)

aln + ǫ(j − i)
, (B.3)

where i, j = 1, . . . ,∞, l, n = 1, . . . , N , aln ≡ al − an, γǫ(x; Λ) is defined through the

deference equation,

γǫ(x + ǫ; Λ) + γǫ(x − ǫ; Λ) − 2γǫ(x; Λ) = log(x/Λ), (B.4)

and Yl is a set of Young diagrams with l boxes, whose element is given as a partition of l,

namely ~l = (l1, l2, . . .) satisfying l1 + l2 + · · · = l with l1 ≥ · · · ≥ lr > lr+1 = lr+2 · · · = 0.

As shown in [10], the Nekrasov partition function can be compactly expressed using a

piecewise-linear function called the (colored) profile function,

fa,k(x|ǫ) ≡
N
∑

l=1

fkl
(x − al|ǫ), (B.5)

with

fk(x|ǫ) ≡ |x| +
∞
∑

i=1

[|x − ǫ(ki − i + 1)| − |x − ǫ(ki − i)) − |x − ǫ(−i + 1)| + |x − ǫ(−i)|] ,

(B.6)

where kl are Young diagrams sitting at x = al. Using (B.5), the instanton part of the

Nekrasov partition function (B.3) can be written as

Zinst(a,k, ǫ,Λ) = exp

(

−1

4

∫

x 6=y
dxdyf ′′

a,k(x|ǫ)f ′′
a,k(y|ǫ)γǫ(x − y; Λ)

)

. (B.7)

We can rewrite the profile function (B.6) using the Frobenius representation (A.2). To

this end, we express the Young diagrams kl by (r̃l|rl) (l = 1, . . . , N) and introduce the

integers,

ñl
i ≡ r̃l

i − 1/2, nl
i ≡ rl

i − 1/2, (i = 1, . . . , Ll) (B.8)
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which satisfy

ñl
1 > · · · > ñl

Ll
≥ 0, nl

1 > · · · > nl
Ll

≥ 0. (B.9)

Using this, the second derivative of the profile function can be rewritten as

f ′′
k(x|ǫ) =

1

2

[

δ(x)+
L
∑

i=1

(

−δ(x+ǫ(ñi+1))+δ(x+ǫñi)+δ(x−ǫni)−δ(x−ǫ(ni+1))

)]

. (B.10)

Substituting this expression into (B.7), we can rewrite the instanton part of the partition

function (B.3) as

Zinst(a,k, ǫ,Λ) =
Λ2kN

ǫ2kN

N
∏

l=1







∏Ll

i<j |nl
i − nl

j|2|ñl
i − ñl

j|2
∏Ll

i,j |nl
i + ñl

j + 1|2

(

Ll
∏

i=1

1

nl
i!ñ

l
i!

)2






×
N
∏

l<n

{

Ll
∏

i=1

Ln
∏

j=1

|aln + ǫ(nl
i − nn

j )|2|aln − ǫ(ñl
i − ñn

j )|2
|aln + ǫ(nl

i + ñn
j + 1)|2|aln − ǫ(ñl

i + nn
j + 1)|2

×
Ll
∏

i=1

1

|aln − ǫñl
i|2 · · · |aln + ǫnl

i|2
×

Ln
∏

j=1

1

|aln + ǫñn
j |2 · · · |aln − ǫnn

j |2

}

.

(B.11)

C. Nekrasov partition function for four-dimensional N = 2 QCD

In this appendix, we summarize the Nekrasov partition function for four-dimensional N = 2

theory with hypermultiplets in the fundamental representation and rewrite it using the

Frobenius representation.

Let m denote the vector of bare masses of the hypermultiplets:

m = (m1, . . . ,mNf
). (C.1)

Then the Nekrasov partition function is given by [3]

Z f
Nek (a,m, ǫ,Λ) = Z f

pert(a,m, ǫ,Λ)

∞
∑

k=1

∑

k1,...,kN∈Z≥0

k1+···+kN=k

∑

~k1∈Yk1

· · ·
∑

~kN∈YkN

Z f
inst(a,m,k, ǫ,Λ),

(C.2)

with

Z f
pert(a, ǫ,Λ) = exp







∑

l 6=n

γǫ(al − an; Λ) +
∑

l,f

γǫ(al + mf ; Λ)







, (C.3)

Z f
inst(a,m,k, ǫ,Λ) = Λk(2N−Nf )

∏

(l,i)6=(n,j)

aln + ǫ(kl,i − kn,j + j − i)

aln + ǫ(j − i)

×
∏

l,f,i

Γ
(

mf +al

ǫ + kli − i + 1
)

Γ
(

mf +al

ǫ − i + 1
) , (C.4)
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where i, j = 1, . . . ,∞, l, n = 1, . . . , N , f = 1, . . . , Nf , aln ≡ al − an, γǫ(x; Λ) is defined

in (B.4), and Yl is again a set of Young diagrams with l boxes. In [10], it was shown

that (C.4) can be written using the colored profile function (B.5) as

Z f
inst (a,m,k, ǫ,Λ) = exp

(

−1

4

∫

x 6=y
dxdyf ′′

a,k(x|ǫ)f ′′
a,k(y|ǫ)γǫ(x − y; Λ)

+
1

2

Nf
∑

f=1

∫

dxf ′′
a,k(x|ǫ)γǫ(x + mf ; Λ)

)

. (C.5)

The easiest way to rewrite (C.4) in the Frobenius representation is substituting (B.10)

into the expression (C.5). The result is

Z f
inst (a,m,k, ǫ,Λ) = Zinst(a,k, ǫ,Λ)

× 1

ΛkNf

Nf
∏

f=1

N
∏

l=1

Ll
∏

i=1

(

|mf + al − ǫñl
i| · · · |mf + al + ǫnl

i|
)

, (C.6)

where Zinst(a,k, ǫ,Λ) is given by (B.11). In deriving (C.6), we have used the relation,

γǫ(x + ǫ; Λ) − γǫ(x; Λ) = log

(

ǫx/ǫ

√
2π

Γ(x/ǫ + 1)

)

. (C.7)
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